
Version: v1.5.0 (0beb4ee) 1

The Terraform Book

James Turnbull

August 26, 2019

Version: v1.5.0 (0beb4ee)

Website: The Terraform Book

Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,

mechanical or photocopying, recording, or otherwise, for commercial purposes
without the prior permission of the publisher.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit here.
© Copyright 2016 - James Turnbull <>

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:

Contents

Page

Chapter 3 Building an application stack with Terraform 1
Our application stack . 1
Parameterizing our configuration . 3

Variables . 4
Maps . 9
Lists . 11
Variable defaults . 13
Populating variables . 15

Starting our stack . 20
Using AWS shared credentials . 23

First resources . 26
Modules . 29

Defining a module . 30
Module structure . 34

Using our module . 45
Getting our module . 47
Moving our module to a repository 48

Counts and counting . 52
Sets of counted resources using splat 54
Setting values with count indexes . 55
Wrapping counts with the element function 59
Conditionals . 60

i

Contents

Locals . 62
Provisioning our stack . 64
Finishing up our stack . 66
Committing our configuration . 67
Validating and formatting . 68
Initializing Terraform . 69
Planning our stack . 69
Applying our stack . 71
Graphing our stack . 74
Seeing the results . 75
Destroying the web stack resources . 77
Summary . 77

List of Figures 79

List of Listings 83

Index 84

Version: v1.5.0 (0beb4ee) ii

Chapter 3

Building an application stack with
Terraform

In the last chapter we installed Terraform and got a crash course in the basics of
creating, managing, and destroying infrastructure. We learned about Terraform
configuration files and the basics of Terraform syntax.
In this chapter we’re going to build a more complex infrastructure: a multi-tier
web application. We’re going to use this exercise to learn more about Terraform
configuration syntax and structure.

Our application stack
We’re going to build a two-tier web application stack. We’re going to build this
stack in Amazon Web Services (AWS) in an Amazon VPC environment. We’ll
create that VPC and the supporting infrastructure as well as the stack itself. The
stack will be made up of two components:

• An Amazon Elastic Load Balancer (ELB).
• Two EC2 instances.

1

Chapter 3: Building an application stack with Terraform

The ELB will be load balancing between our two EC2 instances.

Figure 3.1: Our web application stack

Before we build the stack, we’re going to learn about a new concept: parameter-
izing your configuration.

 WARNING If you’re following along with this and subsequent chapters,
note that we will be creating infrastructure in AWS that will cost small amounts
of money to run. We recommend monitoring the infrastructure you’re launching
in your AWS console and destroying or terminating infrastructure when it is no
longer needed.

Version: v1.5.0 (0beb4ee) 2

Chapter 3: Building an application stack with Terraform

Parameterizing our configuration
In the previous chapter we created some configuration in our ~/terraform/base
/base.tf configuration file.

Listing 3.1: Our original configuration

provider "aws" {
access_key = "abc123"
secret_key = "abc123"
region = "us-east-1"

}

resource "aws_instance" "base" {
ami = "ami-0d729a60"
instance_type = "t2.micro"

}

resource "aws_eip" "base" {
instance = aws_instance.base.id
vpc = true

}

You can see we’ve hard-coded several attributes in this configuration: the AWS
credentials, the AMI, the instance type, andwhether our Elastic IP is in a VPC. If we
were to expand upon this configuration, we’d end up repeating a number of these
values. This is not very DRY. DRY is an abbreviation for “Don’t Repeat Yourself,”
a software principle that recommends reducing the repetition of information. It’s
also not very practical or efficient if we have to change these values in multiple
places.

 TIP A little later, in the Using AWS shared credentials section, we’ll talk

Version: v1.5.0 (0beb4ee) 3

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Chapter 3: Building an application stack with Terraform

more about AWS credentials and how to better protect them.

Variables
In order to address this we’re going to parameterize our configuration using vari-
ables. Variables allow us to centralize and manage values in our configuration.
Let’s use the configuration from Chapter 2 to learn more about variables.
We start by creating a file, called variables.tf, to hold our variables. We create
the file in the ~/terraform/base directory.

Listing 3.2: Creating the variables.tf file

$ cd ~/terraform/base
$ touch variables.tf

 TIP The file can be called anything. We’ve just named it variables.tf for
convenience and identification. Remember all files that end in .tf will be loaded
by Terraform.

Let’s create a few variables in this file now. Variables can come in a number of
types, for example:

• Strings — String syntax. Can also be Boolean’s: true or false.
• Maps — An associative array or hash-style syntax.
• Lists — An array syntax.

Version: v1.5.0 (0beb4ee) 4

https://www.terraform.io/docs/configuration/variables.html
https://www.terraform.io/docs/configuration/variables.html

Chapter 3: Building an application stack with Terraform

Let’s take a look at some string variables first.

Listing 3.3: Our first variables

variable "access_key" {
type = string
description = "The AWS access key."

}

variable "secret_key" {
type = string
description = "The AWS secret key."

}

variable "region" {
type = string
description = "The AWS region."
default = "us-east-1"

}

Terraform variables are created with a variable block. They have a name and
optional type, default, and description arguments.

 TIP You can learn more about variables in the Terraform variable documen-
tation.

Types

We’ve specified the variable type for all our variables. Variable types tell Ter-
raform the type of value of the variable, like string, number, or bool. Terraform
uses types and type constraints to ensure the data used in variables and resources

Version: v1.5.0 (0beb4ee) 5

https://www.terraform.io/docs/configuration/variables.html
https://www.terraform.io/docs/configuration/variables.html

Chapter 3: Building an application stack with Terraform

is correct, failing early rather than parsing bad data.
You can also specify collections of types, like lists or maps. You can create collec-
tion variables by specifying the type of collection and the type of values contained
in the collection, for example a list of strings.

Listing 3.4: Variable collection type specified

variable "region_list" {
type = list(string)
description = "AWS availability zones."
default = ["us-east-1a", "us-east-1b"]

}

This would create a list of strings.

 TIP You can also specify any as the type to allow the collection to contain
any type of value.

If you omit the type attribute then Terraform assumes your variable is a string,
unless the default is in the format of another variable type. Here Terraform
would assume the first variable is a string but that the second is a list of strings.

Version: v1.5.0 (0beb4ee) 6

Chapter 3: Building an application stack with Terraform

Listing 3.5: Variable type specified

variable "region" {
description = "The AWS region."
default = "us-east-1"

}

variable "region_list" {
description = "AWS availability zones."
default = ["us-east-1a", "us-east-1b"]

}

 TIP You can learn more about types and type constraints in the Terraform
type documentation.

Descriptions

You can also supply an optional description of the variable using the description
attribute.

Listing 3.6: Variable descriptions

variable "region" {
description = "The AWS region."
default = "us-east-1"

}

Version: v1.5.0 (0beb4ee) 7

https://www.terraform.io/docs/configuration/types.html
https://www.terraform.io/docs/configuration/types.html

Chapter 3: Building an application stack with Terraform

 TIP We recommend you always add variable types and descriptions. You
never know who’ll be using your code, and it’ll make their (and your) life a lot
easier if every variable has a clear type and description. Comments are fun too.

Values

There are a number of ways to populate the value of a variable, which we’ll see
shortly. The value of our first two variables is currently undefined. The third
variable, the region, has a default value set with the default attribute. This
is useful if you want the variable set, even if it’s not populated by any other
mechanism.

Using variables

Let’s update our provider with the new variables we’ve just created.

Listing 3.7: Adding our new variables

provider "aws" {
access_key = var.access_key
secret_key = var.secret_key
region = var.region

}

Each variable is identified as a variable by the var. prefix. Currently only one of
these variables has a value, the default of us-east-1we’ve set for the var.region
variable. Soon we’ll see how to populate values for the other variables but let’s
first explore some of the variable types we’ll be using.

Version: v1.5.0 (0beb4ee) 8

Chapter 3: Building an application stack with Terraform

 TIP Since Terraform 0.8 there is a command called terraform console. The
console is a Terraform REPL that allows you to work with your resources. It’s a
good way to explore working with Terraform syntax. You can read about it in the
console command documentation.

Maps
Most of our variable examples have, thus far, been strings. We can also specify
other types of variables, for example maps and lists. Let’s look at maps first.

 NOTE See a full list of variables in the variables documentation.

Maps are associative arrays and ideal for situations where you want to use one
value to look up another value. For example, one of our potential configuration
attributes is the EC2 instance’s AMI. AMIs are region specific, so if we change
region we will need to look up a new AMI. Terraform’s maps are ideal for this
task.
Let’s define a map of strings in our variables.tf file.

Version: v1.5.0 (0beb4ee) 9

https://www.terraform.io/docs/commands/console.html
https://www.terraform.io/docs/configuration/variables.html

Chapter 3: Building an application stack with Terraform

Listing 3.8: A map variable

variable "ami" {
type = map(string)
default = {
us-east-1 = "ami-0d729a60"
us-west-1 = "ami-7c4b331c"

}
description = "The AMIs to use."

}

We can see our new variable is called ami. We’ve specified a type of map(string).
The (string) after the map indicates this is a map of strings. We’ve also specified
default values for two keys: the us-east-1 and us-west-1 regions.
So how do we use this map variable? Let’s update base.tf with the ami variable.

Listing 3.9: Using map variables in base.tf

provider "aws" {
access_key = var.access_key
secret_key = var.secret_key
region = var.region

}

resource "aws_instance" "base" {
ami = var.ami[var.region]
instance_type = "t2.micro"

}

resource "aws_eip" "base" {
instance = aws_instance.base.id
vpc = true

}

Version: v1.5.0 (0beb4ee) 10

Chapter 3: Building an application stack with Terraform

You can see we’ve used two variables to populate our ami argument: var.ami and
var.region, like so:
var.ami[var.region]

This performs a lookup of the var.ami variable using the value of the var.region
variable. So if our var.region variable was set to us-west-1, then our ami at-
tribute would receive a value of ami-7c4b331c.
You can also look up maps explicitly, for example, var.ami[“us-west-1”] will
get the value of the us-west-1 key from the var.ami map variable.
Finally, Terraform also has a set of built-in functions to make it easier to work
with variables and values. This includes functions to work with collections. For
maps, we have a function available called lookup that lookups up the value of a
map like so:
lookup(map, key)

Or in the case of our lookup:
lookup(var.ami, var.region)

 TIP You can find a full list of functions in the Terraform functions reference.

Lists
Another useful variable type available in Terraform is the list. Let’s assume we
have a list of security groups strings we’d like to add to our instances. Our list
would be constructed like so:

Version: v1.5.0 (0beb4ee) 11

https://www.terraform.io/docs/configuration/functions/lookup.html
https://www.terraform.io/docs/configuration/functions.html

Chapter 3: Building an application stack with Terraform

Listing 3.10: Constructing a list

variable "security_group_ids" {
type = list(string)
description = "List of security group IDs."
default = ["sg-4f713c35", "sg-4f713c35", "sg-4f713c35"]

}

We can specify a list directly as the value of a variety of attributes, for example:

Listing 3.11: Using a list

resource "aws_instance" "base" {

. . .

vpc_security_group_ids = var.security_group_ids
}

 NOTE You’ll need to create some security groups if you want to test this
and use the resulting IDs in your list.

Lists are zero-indexed. We can retrieve a single element of a list using the syntax:
var.variable[element]

Like so:

Version: v1.5.0 (0beb4ee) 12

https://en.wikipedia.org/wiki/Zero-based_numbering

Chapter 3: Building an application stack with Terraform

Listing 3.12: Retrieving a list element

resource "aws_instance" "base" {

. . .

vpc_security_group_ids = var.security_group_ids[1]
}

This will populate the vpc_security_group_ids attribute with the second element
in our var.security_group_ids variable.
You can also use a function called element to retrieve a value from a list.
element(list, index)

Or for the second element again:
element(var.security_group_ids, 1)

 TIP Again, you can find a full list of functions in the Terraform functions
reference.

Variable defaults
Variables with and without defaults behave differently. A defined, but empty,
variable is a required value for an execution plan.

Version: v1.5.0 (0beb4ee) 13

https://www.terraform.io/docs/configuration/functions/element.html
https://www.terraform.io/docs/configuration/functions.html
https://www.terraform.io/docs/configuration/functions.html

Chapter 3: Building an application stack with Terraform

Listing 3.13: An empty variable

variable "access_key" {
type = string
description = "The AWS access key."

}

If you run a Terraform execution plan then it will prompt you for the value of
access_key (and any other empty variables).
Let’s try that now.

Listing 3.14: Empty and default variables

$ terraform plan
var.access_key
Enter a value: abc123

var.secret_key
Enter a value: abc123

. . .

We can see that Terraform has prompted us to provide values for two variables:
var.access_key and var.secret_key. Again, the var prefix indicates this is a
variable, and the suffix is the variable name. Setting the variables for the plan
will not persist them. If you re-run terraform plan, you’ll again be prompted to
set values for these values.
So how does Terraform populate and persist variables?

Version: v1.5.0 (0beb4ee) 14

Chapter 3: Building an application stack with Terraform

Populating variables
Of course, inputting the variable values every time you plan or apply Terraform
configuration is not practical. To address this, Terraform has a variety of meth-
ods by which you can populate variables. Those ways, in order of descending
resolution, are:

1. Loading variables from command line flags.
2. Loading variables from a file.
3. Loading variables from environment variables.
4. Variable defaults.

Loading variables from command line flags

The first method allows you to pass in variable values when you run terraform
commands.

Listing 3.15: Command line variables

$ terraform plan -var 'access_key=abc123' -var 'secret_key=
abc123'

We can also populate maps via the -var command line flag:

Listing 3.16: Setting a map with var

$ terraform plan -var 'ami={ us-east-1 = "ami-0d729a60", us-west-
1 = "ami-7c4b331c" }'

And lists via the command line:

Version: v1.5.0 (0beb4ee) 15

Chapter 3: Building an application stack with Terraform

Listing 3.17: Populating a list via command line flag

$ terraform plan -var 'security_group_ids=["sg-4f713c35", "sg-4
f713c35", "sg-4f713c35"]'

You can pass these variables on both the plan and apply commands. Obviously,
like the input prompt, this does not persist the values of variables. Next time you
run Terraform, you’ll again need to specify these variables values.

Loading variables from a file

Our next method, populating variable values via files, does allow persistence.
When Terraform runs it will look for a file called terraform.tfvars. We can
populate this file with variable values that will be loaded when Terraform runs.
Let’s create that file now.

Listing 3.18: Creating a variable assignment file

$ touch terraform.tfvars

We can then populate this file with variables—here a string, map, and list respec-
tively.

Version: v1.5.0 (0beb4ee) 16

Chapter 3: Building an application stack with Terraform

Listing 3.19: Adding variable assignments

access_key = "abc123"
secret_key = "abc123"
ami = {
us-east-1 = "ami-0d729a60"
us-west-1 = "ami-7c4b331c"

}
security_group_ids = [
"sg-4f713c35",
"sg-4f713c35",
"sg-4f713c35"

]

When Terraform runs it will automatically load the terraform.tfvars file and
assign any variable values in it. The file can contain Terraform configuration
syntax or JSON, just like normal Terraform configuration files.
Any variable for which you define a value needs to exist. In our case, the vari-
ables access_key, secret_key, and security_group_ids need to be defined with
variable blocks in our variables.tf file. If they do not exist you’ll get an error
like so:

Listing 3.20: Variable doesn’t exist error

module root: 1 error(s) occurred:

* provider config 'aws': unknown variable referenced: '
access_key'. define it with 'variable' blocks

You can also name the terraform.tfvars file something else—for example, we
could have a variable file named base.tfvars. If you do specify a new file name,
you will need to tell Terraform where the file is with the -var-file command line

Version: v1.5.0 (0beb4ee) 17

Chapter 3: Building an application stack with Terraform

flag.

Listing 3.21: Running Terraform with a custom variable file

$ terraform plan -var-file base.tfvars

 TIP You can use more than one -var-file flag to specify more than one
file. If you specify more than one file, the files are evaluated from first to last, in
the order specified on the command line. If a variable value is specified multiple
times, the last value defined is used.

Loading variables from environment variables

Terraform will also parse any environment variables that are prefixed with TF_VAR.
For example, if Terraform finds an environment variable named:
TF_VAR_access_code=abc123

it will use the value of the environment variable as the string value of the
access_code variable.
We can populate a map via an environment variable:
TF_VAR_ami='{us-east-1 = "ami-0d729a60", us-west-1 = "ami-7c4b331c"}'

and a list.
TF_VAR_roles='["sg-4f713c35", "sg-4f713c35", "sg-4f713c35"]'

 TIP Variable files and environment variables are a good way of protecting

Version: v1.5.0 (0beb4ee) 18

Chapter 3: Building an application stack with Terraform

passwords and secrets. This avoids storing them in our configuration files, where
they might end up in version control. A better way is obviously some sort of
secrets store. Since Terraform 0.8 there is now support for integration with Vault
for secrets management.

Variable defaults

Lastly, you can specify variable defaults for your variables.

Listing 3.22: Variable defaults

variable "region" {
type = string
description = "The AWS region."
default = "us-east-1"

}

Variable defaults are specified with the default attribute. If nothing in the above
list of variable population methods resolves the variable then Terraform will use
the default.

 TIP Terraform also has an “override” file construct. When Terraform loads
configuration files it appends them. With an override the files are instead merged.
This allows you to override resources and variables.

Our new variables are useful syntax. Let’s start our build using some of this new
syntax.

Version: v1.5.0 (0beb4ee) 19

https://www.terraform.io/docs/providers/vault/index.html
https://www.terraform.io/docs/providers/vault/index.html
https://www.terraform.io/docs/configuration/override.html

Chapter 3: Building an application stack with Terraform

Starting our stack
Now that we’ve learned how to parameterize our configuration, let’s get started
with building a new application stack. Inside our ~/terraform directory let’s cre-
ate a new directory called web to hold our stack configuration, and let’s initialize
it as a Git repository.

Listing 3.23: Creating the web directory

$ cd ~/terraform
$ mkdir web
$ cd web
$ git init

Let’s add our .gitignore file too. We’ll exclude any state files to ensure we don’t
commit any potentially sensitive variable values.

Listing 3.24: Adding the state file and backup to .gitignore

$ echo "terraform.tfstate*" >> .gitignore
$ git add .gitignore
$ git commit -m "Adding .gitignore file"

It’s important to note that this is a new configuration. Terraform configurations in
individual directories are isolated. Our new configuration in the web directory will,
by default, not be able to refer to, or indeed know about, any of the configuration
in the base directory. We’ll see how to deal with this in Chapter 5, when we talk
more about state.

Version: v1.5.0 (0beb4ee) 20

Chapter 3: Building an application stack with Terraform

 NOTE You can find the code for this chapter on GitHub.

Let’s create a new file to hold our stack configuration, a file to define our variables,
and a file to populate our variables.

Listing 3.25: Creating the stack files

$ touch web.tf variables.tf terraform.tfvars

Let’s begin by populating our variables.tf file.

Version: v1.5.0 (0beb4ee) 21

https://github.com/turnbullpress/tfb-code/tree/master/3

Chapter 3: Building an application stack with Terraform

Listing 3.26: Our variables.tf file

variable "access_key" {
type = string
description = "The AWS access key."

}
variable "secret_key" {
type = string
description = "The AWS secret key."

}
variable "region" {
type = string
description = "The AWS region."

}
variable "key_name" {
type = string
description = "The AWS key pair to use for resources."

}
variable "ami" {
type = map(string)
type = "map"
description = "A map of AMIs."
default = {}

}
variable "instance_type" {
type = string
description = "The instance type."
default = "t2.micro"

}

Note that we’ve used variables similar to our example in Chapter 2. We’ve also
added a few new variables, including the name of a key pair we’re going to use
for our instances, and a map that will specify the AMI we wish to use.

 TIP You should have created a key pair when you set up AWS.

Version: v1.5.0 (0beb4ee) 22

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html#create-a-key-pair

Chapter 3: Building an application stack with Terraform

Let’s populate some of these variables by adding definitions to our terraform.
tfvars file.

Listing 3.27: The web terraform.tfvars file

access_key = "abc123"
secret_key = "abc123"
region = "us-east-1"
ami = {
us-east-1 = "ami-f652979b"
us-west-1 = "ami-7c4b331c"

}

You can see we’ve provided values for our AWS credentials, the region, and a map
of AMIs for the us-east-1 and us-west-1 regions.

Using AWS shared credentials
We mentioned earlier that we don’t have to specify our credentials in the
terraform.tfvars file. Indeed, it’s often a very poor security model to specify
these credentials in a file that could easily be accidentally distributed or added
to version control. Instead of specifying the credentials in your configuration,
you should configure the AWS client tools. These provide a shared creden-
tial configuration that Terraform can consume, removing the need to specify
credentials.
To install the AWS client tools on Linux, we’d use Python pip:

Version: v1.5.0 (0beb4ee) 23

Chapter 3: Building an application stack with Terraform

Listing 3.28: Installing AWS CLI on Linux

$ sudo pip install awscli

On OS X we can use pip or brew to install the AWS CLI:

Listing 3.29: Installing AWS CLI on OSX

$ brew install awscli

On Windows, we’d use the MSI installer from AWS, or if you’ve used the Choco-
latey package manager, we’d install via the choco binary:

Listing 3.30: Installing awscli via choco

C:\> choco install awscli

We then run the aws binary with the configure option.

Listing 3.31: Running aws configure

$ aws configure
AWS Access Key ID [None]: abc123
AWS Secret Access Key [None]: abc123
Default region name [None]: us-east-1
Default output format [None]:

You would replace each abc123 with your AWS credentials and specify your pre-

Version: v1.5.0 (0beb4ee) 24

http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-msi-on-windows

Chapter 3: Building an application stack with Terraform

ferred default region. This will create a file in ~/.aws/credentials with your
credentials that will look like:

Listing 3.32: The aws/credentials file

[default]
aws_access_key_id = abc123
aws_secret_access_key = abc123

And a file called ~/.aws/config, with our default region:

Listing 3.33: The aws/config file

[default]
region = us-east-1

 TIP Due to a bug with Terraform, you will still need to specify region =
us-east-1 (or your region) in your Terraform configurations. This is because
Terraform does not seem to read the config file in some circumstances.

Now we can remove the var.access_key and var.secret_key variables from our
variables.tf and terraform.tfvars files if we wish.
For the rest of the bookwe’ll assume you have configured shared credentials,
and we’ll remove references to the access and secret keys!
For the other variables in our variables.tf file, we’re going to rely on their de-
faults.

Version: v1.5.0 (0beb4ee) 25

Chapter 3: Building an application stack with Terraform

 TIP We could also use the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
environment variables to specify our credentials. Terraform also automatically
consumes these variables. If you’re on OS X, you should also look at envchain,
which uses the OS X Keychain to help manage environment variables.

First resources
Now that we’ve got the inputs for our stack defined, let’s start to create our re-
sources and their configuration in the web.tf file.

Version: v1.5.0 (0beb4ee) 26

https://github.com/sorah/envchain

Chapter 3: Building an application stack with Terraform

Listing 3.34: Our web.tf file

provider "aws" {
region = var.region

}

module "vpc_basic" {
source = "./vpc"
name = "web"
cidr = "10.0.0.0/16"
public_subnet = "10.0.1.0/24"

}

resource "aws_instance" "web" {
ami = var.ami[var.region]
instance_type = var.instance_type
key_name = var.key_name
subnet_id = module.vpc_basic.

public_subnet_id
associate_public_ip_address = true
user_data = file("files/web_bootstrap.sh")

vpc_security_group_ids = [
"aws_security_group.web_host_sg.id",

]

count = 2
}

resource "aws_elb" "web" {
name = "web-elb"
subnets = module.vpc_basic.public_subnet_id
security_groups = aws_security_group.web_inbound_sg.id
listener {
instance_port = 80

. . .
}
instances = aws_instance.web.*.id

}

resource "aws_security_group" "web_inbound_sg" {
. . .

Version: v1.5.0 (0beb4ee) 27

Chapter 3: Building an application stack with Terraform

 TIP You’ll find code you can download and use for this example on GitHub.

You can see we’ve first added the aws provider to allow us to provision our re-
sources from AWS. We’ve omitted the access and secret access keys from our
provider because we’ve assumed we’re using our AWS shared configuration to
provide them. The only option we have specified for the provider is the region.
As we discussed in Chapter 2, you can define multiple providers, both for different
services and for different configurations of service. A common Terraform pattern
is to define multiple providers aliased for specific attributes—for example, being
able to create resources in different AWS regions. Here’s an example:

Listing 3.35: Multiple providers

provider "aws" {
region = var.region

}

provider "aws" {
alias = "west"
region = "us-west-2"

}

resource "aws_instance" "web" {
provider = "aws.west"

. . .
}

We’ve defined an aws provider that uses our var.region variable to define the
AWS region to which we’ll connect. We’ve then defined a second aws provider
with an alias attribute of west and the region hard-coded to us-west-2.

Version: v1.5.0 (0beb4ee) 28

https://github.com/turnbullpress/tfb-code/blob/master/3/web/web.tf
https://www.terraform.io/docs/providers/aws/index.html

Chapter 3: Building an application stack with Terraform

We can now refer to this specific provider by using the provider attribute. The
provider is a special type of attribute called a meta-argument. Meta-arguments
are attributes you can add to any resources in Terraform. Terraform has a number
of meta-arguments available, and we’ll see others later in the book.

 TIP The depends_on attribute we mentioned in the last chapter is also a meta-
argument.

We’re going to stick with our single aws provider for now and use a single AWS
region.
You can also see that we’ve added some new configuration syntax and structures to
our web.tf file. Let’s look at each of these now, starting with the module structure.

Modules
Modules are defined with the module block. Modules are a way of constructing
reusable bundles of resources. They allow you to organize collections of Terraform
code that you can share across configurations.
Often you have a configuration construct such as infrastructure like an AWS VPC,
an application stack, or other collection of resources that you need to repeat mul-
tiple times in your configurations. Rather than cutting and pasting and repeating
all the resources required to configure that infrastructure, you can bundle them
into a module. You can then reuse that module in your configurations.
You can configure inputs and outputs for modules: an API interface to your mod-
ules. This allows you to customize them for specific requirements, while your
code remains as DRY and reusable as possible.

Version: v1.5.0 (0beb4ee) 29

https://www.terraform.io/docs/configuration/resources.html#provider
https://www.terraform.io/docs/configuration/resources.html
https://www.terraform.io/docs/configuration/resources.html
https://www.terraform.io/docs/configuration/resources.html#depends_on-explicit-resource-dependencies
https://www.terraform.io/docs/modules/index.html
https://en.wikipedia.org/wiki/Amazon_Virtual_Private_Cloud

Chapter 3: Building an application stack with Terraform

 TIP Hashicorp makes available a collection of verified and community mod-
ules in the Terraform Module Registry. These include modules for a large number
of purposes and are a good point to start if you need a module. You can learn
more about the Terraform Module Registry in the documentation.

Defining a module
To Terraform, every directory containing configuration is automatically a module.
Using modules just means referencing that configuration explicitly. References to
modules are created with the module block.

Listing 3.36: The vpc_basic module

module "vpc_basic" {
source = "./vpc_basic"
name = "web"
cidr = "10.0.0.0/16"
public_subnet = "10.0.1.0/24"

}

As you can see, modules look just like resources only without a type. Each module
requires a name. The module name must be unique in the configuration.
Modules only have one required attribute: the module’s source. The source tells
Terraform where to find the module’s source code. You can store modules lo-
cally in your filesystem or remotely in repositories such as GitHub. In our case
the vpc_basic module is located in a directory called vpc_basic inside our ~/
terraform/web directory.
You can specify a module multiple times in a configuration by giving it a new

Version: v1.5.0 (0beb4ee) 30

https://registry.terraform.io/
https://www.terraform.io/docs/registry/index.html
https://www.terraform.io/docs/modules/sources.html

Chapter 3: Building an application stack with Terraform

name but specifying the same source. For example:

Listing 3.37: Multiple vpc_basic modules

module "vpc_basic_a" {
source = "./vpc_basic"

. . .
}

module "vpc_basic_b" {
source = "./vpc_basic"

. . .
}

Here Terraform would create two VPCs, one from vpc_basic_a and the other from
vpc_basic_b. We would configure each differently.
Let’s create the vpc_basic directory first and initialize it as a Git repository, be-
cause ultimately we want to store our module on GitHub.

Listing 3.38: Creating the vpc_basic module directory

$ pwd
~/terraform/web
$ mkdir vpc_basic
$ cd vpc_basic
$ git init

Inside our source attribute we specify the vpc_basic directory relative to the ~/
terraform/web directory. Remember Terraform uses the current directory it’s in
when executed as its root directory. To ensure Terraform finds our module we
need to specify the vpc directory relative to the current directory.

Version: v1.5.0 (0beb4ee) 31

Chapter 3: Building an application stack with Terraform

 TIP This path manipulation in Terraform is often tricky. To help with this,
Terraform provides a built-in variable called path. You can read about how to use
the path variable in the interpolation path variable documentation.

Instead of storing them locally, you can also specify remote locations for your
modules. For example:

Listing 3.39: The vpc_basic module with a remote source

module "vpc_basic" {
source = "github.com/turnbullpress/tf_vpc_basic

. . .
}

This will load our module from a GitHub repository:
https://github.com/turnbullpress/tf_vpc_basic

This allows us to reference module configurations without needing to store them
in directories underneath or adjacent to our configuration.
This also allows us to create versioning for modules. Terraform can refer to a
specific repository branch or tag as the source of a module. For example,

Listing 3.40: Referencing a module version

module "vpc_basic" {
source = "github.com/turnbullpress/tf_vpc_basic.git?ref=

production"
}

Version: v1.5.0 (0beb4ee) 32

https://www.terraform.io/docs/configuration/expressions.html#path-root

Chapter 3: Building an application stack with Terraform

The ref= suffix can be a branch name, a tag, or a commit. Here we’re downloading
the production branch of the module in the tf_vpc_basic repository.
Or if you want to get a module specifically from the Terraform Registry then you
can use syntax like so:

Listing 3.41: Referencing a registry module

module "vpc" {
source = "terraform-aws-modules/vpc/aws"

}

The source path format for Terraform Registry modules looks like this:
namespace/name/provider

The namespace is like an organization or source of the module. The name is the
module’s name and the provider is the specific provider it uses. The module’s
homepage will contain full documentation on how to use it, including any required
inputs and any outputs.

 NOTE Modules with a blue tick on the Terraform Registry are verified and
from a Hashicorp partner. These modules should be more resilient and tested than
others. You can also publish your own modules on the Registry.

Terraform Registry modules can also be versioned and you can use a specific ver-
sion of a module like so:

Version: v1.5.0 (0beb4ee) 33

https://registry.terraform.io
https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws
https://registry.terraform.io/modules/terraform-aws-modules/vpc/aws
https://www.terraform.io/docs/registry/modules/verified.html
https://www.terraform.io/docs/registry/modules/publish.html

Chapter 3: Building an application stack with Terraform

Listing 3.42: Referencing a registry module’s version

module "vpc" {
source = "terraform-aws-modules/vpc/aws"
version = "1.3.0"

}

 TIP

You can find a full list of the potential sources and how to configure them in the
module source documentation.

Module structure
Inside our vpc_basic directory our module is identical to any other Terraform
configuration. It will have variables, variable definitions, and resources.

Variables

Let’s start with creating a file to hold the module’s variables. We’ll use a file called
interface.tf.

 TIP The explicit file name makes it clear that this is the module’s API, the
interface to the module.

Version: v1.5.0 (0beb4ee) 34

https://www.terraform.io/docs/modules/sources.html

Chapter 3: Building an application stack with Terraform

Listing 3.43: Creating the vpc_basic module variables

$ cd vpc_basic
$ touch interface.tf

We populate this file with the variables we’ll use to configure the VPC that the
module is going to build.

Listing 3.44: The vpc_basic module’s variables

variable "name" {
type = string
description = "The name of the VPC."

}
variable "cidr" {
type = string
description = "The CIDR of the VPC."

}
variable "public_subnet" {
type = string
description = "The public subnet to create."

}
variable "enable_dns_hostnames" {
type = bool
description = "Should be true if you want to use private DNS

within the VPC"
default = true

}
variable "enable_dns_support" {
type = bool
description = "Should be true if you want to use private DNS

within the VPC"
default = true

}

Version: v1.5.0 (0beb4ee) 35

Chapter 3: Building an application stack with Terraform

You can see that we’ve defined a number of variables. Some of the variables will
be required: name, cidr, and public_subnet. These variables currently have no
defaults, so we must specify a value for each of them. We’ve specified the values
in the module block in our web.tf file. This represents the incoming API for the
vpc_basic module.

Listing 3.45: The vpc_basic module’s default variables

module "vpc_basic" {
source = "./vpc_basic"
name = "web"
cidr = "10.0.0.0/16"
public_subnet = "10.0.1.0/24"

}

If we do not specify a required variable, then Terraform will fail with an error:
Error loading Terraform: module root: module vpc_basic: required
variable cidr not set

 NOTE So what’s module root? Well, remember that modules are just
folders containing files. Terraform considers every folder of configuration files a
module. Terraform has created an implicit module, called the root module, from
the stack configuration contained in the /̃terraform/web directory.

We also have several variables with defaults that we can override when configur-
ing our module.

Version: v1.5.0 (0beb4ee) 36

Chapter 3: Building an application stack with Terraform

Listing 3.46: Overriding vpc_basic module’s default variables

module "vpc_basic" {
source = "./vpc_basic"

. . .
enable_dns_hostnames = false

}

This will override the default value of the enable_dns_hostnames variable and set
it to false.

Module resources

Now let’s add the resources to configure our VPC. We’ll create a configuration file
called main.tf to hold the resources and then populate it.

Version: v1.5.0 (0beb4ee) 37

Chapter 3: Building an application stack with Terraform

Listing 3.47: The vpc_basic module resources

resource "aws_vpc" "tfb" {
cidr_block = var.cidr
enable_dns_hostnames = var.enable_dns_hostnames
enable_dns_support = var.enable_dns_support
tags = {
Name = var.name

}
}

resource "aws_internet_gateway" "tfb" {
vpc_id = aws_vpc.tfb.id
tags = {
Name = "${var.name}-igw"

}
}

resource "aws_route" "internet_access" {
route_table_id = aws_vpc.tfb.main_route_table_id
destination_cidr_block = "0.0.0.0/0"
gateway_id = aws_internet_gateway.tfb.id

}

resource "aws_subnet" "public" {
vpc_id = aws_vpc.tfb.id
cidr_block = var.public_subnet
map_public_ip_on_launch = var.map_public_ip_on_launch
tags = {
Name = "${var.name}-public"

}
}

 TIP Our VPC module is very simple. It does not expose anywhere near the
complexity of a complete VPC configuration. For a more fully featured module

Version: v1.5.0 (0beb4ee) 38

Chapter 3: Building an application stack with Terraform

take a look at the Terraform Community VPC module.

You can see we’ve added a number of new resources but what you can’t see is
an aws provider definition. This is because we don’t need one. The module will,
by default, inherit the provider configuration from the web.tf file and use that to
connect to AWS.

Module provider inheritance

However if you have multiple providers specified in the web.tf file, as we saw
earlier using the alias attribute, then you must explicitly tell the module which
provider to use!

 TIP This change occurred in Terraform 0.11 and later.

So if our web.tf file has defined two providers:

Listing 3.48: Multiple aliased providers

provider "aws" {
alias = "use1"
region = "us-east-1"

}

provider "aws" {
alias = "uws2"
region = "us-west-2"

}

Version: v1.5.0 (0beb4ee) 39

https://github.com/terraform-aws-modules/terraform-aws-vpc

Chapter 3: Building an application stack with Terraform

One aliased use1 and one aliased usw2 then you must explicitly tell the module
which provider to use. We do this using the providers meta-argument.

Listing 3.49: The vpc_basic module’s default variables

module "vpc_basic" {
source = "./vpc_basic"
name = "web"
cidr = "10.0.0.0/16"
public_subnet = "10.0.1.0/24"
providers = {
"aws" = "aws.use1"

}
}

Here we’ve specified a new attribute for our module: providers. The providers
attribute contains a list of each of the providers our module uses and the alias
name of the specific provider to use. So in this case for our aws provider the vpc
module will use the aws.use1 definition of the provider.

 TIP You can read more about module provider inheritance in the modules
documentation.

Our module resources

So back to our module’s resources. You can see that we’ve used a series of new
AWS resource types: the VPC itself, gateways, routes, and subnets. Let’s look at
the aws_vpc resource in more detail.

Version: v1.5.0 (0beb4ee) 40

https://www.terraform.io/docs/modules/usage.html#providers-within-modules
https://www.terraform.io/docs/modules/usage.html#providers-within-modules
https://www.terraform.io/docs/providers/aws/r/vpc.html

Chapter 3: Building an application stack with Terraform

Listing 3.50: The aws_vpc resource

resource "aws_vpc" "tfb" {
cidr_block = var.cidr
enable_dns_hostnames = var.enable_dns_hostnames
enable_dns_support = var.enable_dns_support
tags = {
Name = var.name

}
}

We’ve called our VPC resource aws_vpc.tfb.1 Inside the resource, we’ve passed
some of our variables in—for example, the var.cidr variable to configure the
resource. We need to ensure each of these variables is defined and that they’re
either populated in the module block or that a default exists in the module for
them.
In the main.tf file we also configure a series of other resources using a mix of
variables and resource references as the values of our attributes—for example, in
the aws_subnet resource:

Listing 3.51: The aws_subnet resource

resource "aws_subnet" "public" {
vpc_id = aws_vpc.tfb.id
cidr_block = var.public_subnet
tags = {
Name = "${var.name}-public"

}
}

Our resource is named aws_subnet.public and references attributes from earlier
1tfb for The Terraform Book

Version: v1.5.0 (0beb4ee) 41

https://www.terraform.io/docs/providers/aws/r/subnet.html

Chapter 3: Building an application stack with Terraform

configured resources. For example, the vpc_id attribute is populated from the ID
of the aws_vpc.tfb resource we created earlier in the module.
aws_vpc.tfb.id

Another interesting attribute is the Name tag we’ve created. Here we’ve used the
interpolated var.name variable inside a string.
${var.name}-public

This will create a value that combines the value of the var.name variable with the
string -public.
The combination of these resources will create an Amazon VPC with access to the
Internet, internal routing, and a single public subnet, specified in CIDR notation.

Outputs

Lastly, we need to specify outputs from our module. This is essentially the API
response from using the module. They can contain useful data like the IDs of
resources created or other configuration that we might want to use outside of the
module to configure other resources. To add these outputs we use a new construct
called an output.
The output construct can be used in any Terraform configuration, not just in mod-
ules. It is a way to highlight specific information from the attributes of resources
we’re creating. This allows us to selectively return critical information to the user
or to another application rather than returning all the possible attributes of all
resources and having to filter the information down.
Let’s add some outputs to the end of our interface.tf file.

Version: v1.5.0 (0beb4ee) 42

https://en.wikipedia.org/w/index.php?title=Classless_Inter-Domain_Routing§ion=2#CIDR_notation
https://www.terraform.io/docs/configuration/outputs.html

Chapter 3: Building an application stack with Terraform

Listing 3.52: The vpc_basic module outputs

output "public_subnet_id" {
value = aws_subnet.public.id

}

output "vpc_id" {
value = aws_vpc.tfb.id

}

output "cidr" {
value = aws_vpc.tfb.cidr_block

}

Here one of our outputs is the VPC ID. We’ve called the output vpc_id. The output
will return the aws_vpc.tfb.id attribute value from the aws_vpc.tfb resource we
created inside the module.
You can see that, like a variable, an output is configured as a block with a name.
Each output has a value, usually an interpolated attribute from a resource being
configured.

 TIP Since Terraform 0.8, you can also add a description attribute to your
outputs, much like you can for your variables.

Outputs can also be marked as containing sensitive material by setting the
sensitive attribute.

Version: v1.5.0 (0beb4ee) 43

Chapter 3: Building an application stack with Terraform

Listing 3.53: The vpc_basic module outputs

output "public_subnet_id" {
value = aws_subnet.public.id
sensitive = true

}

When outputs are displayed—for instance, at the end of the application of a plan—
sensitive outputs are redacted, with <sensitive> displayed instead of their value.

 NOTE This is purely a visual change. The outputs are not encrypted or
protected. This is more to keep the information out of logs, for example a build
system.

We’ll see how to use these outputs inside our stack configuration shortly.

 NOTE We recommend using a naming convention for Terraform files inside
modules. This isn’t required but it makes code organization and comprehension
easier. We use interface.tf for variables and outputs and main.tf for resources.

With that our module is complete. Now let’s see it at work.

Version: v1.5.0 (0beb4ee) 44

Chapter 3: Building an application stack with Terraform

Using our module
Back in our web.tf configuration file we’ve already defined our module block.

Listing 3.54: The vpc_basic module block revisited

module "vpc_basic" {
source = "./vpc_basic"
name = "web"
cidr = "10.0.0.0/16"
public_subnet = "10.0.1.0/24"

}

Inside the module block we’ve passed in all of our required variables and when
Terraform runs it will:

1. Load the module code.
2. Pass in the variables.
3. Create all the resources in the module.
4. Return the outputs.

Let’s see how we can use those outputs in our stack’s configuration.
We have the aws_elb.web or AWS Elastic Load Balancer resource. To configure
it we need to provide at least one piece of information from our vpc module: the
subnet ID of the subnet to which our load balancer is connected.

Version: v1.5.0 (0beb4ee) 45

Chapter 3: Building an application stack with Terraform

Listing 3.55: Our web aws_elb resource

resource "aws_elb" "web" {
name = "web-elb"
subnets = [module.vpc_basic.public_subnet_id]
security_groups = [aws_security_group.web_inbound_sg.id]
listener {
instance_port = 80
instance_protocol = "http"
lb_port = 80
lb_protocol = "http"

}
instances = aws_instance.web.*.id

}

We’ve specified a module output for the value of the subnets attribute. We’ve
wrapped it in [] to convert it into a list because the subnets argument expects
a list value to be returned, even though in our case we’re only returning a single
value. This converts the string returned by the module to a list.
[module.vpc_basic.public_subnet_id]

 TIP You can read more about type conversion in the Terraform expressions
documentation.

This variable is an output from our vpcmodule. Module outputs are prefixed with
module, the module name—here vpc_basic—and then the name of the output.
You can access any output you’ve defined in the module.
It’s important to remember that a module’s resources are isolated. You only see
the data you define. You must specify outputs for any attribute values you want
to expose from them.

Version: v1.5.0 (0beb4ee) 46

https://www.terraform.io/docs/configuration/expressions.html
https://www.terraform.io/docs/configuration/expressions.html

Chapter 3: Building an application stack with Terraform

Like resources, modules automatically create dependencies and relationships.
For example, by using the module.vpc_basic.public_subnet_id output from
the vpc_basic module we’ve created a dependency relationship between the
aws_elb.web resource and the vpc_basic module.

 TIP Since Terraform 0.8, you can also specify the depends_on meta-argument
to explicitly create a dependency on a module. You can reference a module via
name, for example module.vpc_basic.

We can use this combination of variables and outputs as a simple API for our
modules. It allows us to define standard configuration in the form of modules and
then use the outputs of those modules to ensure standardization of our resources.

 TIP The fine folks at Segment.io have released an excellent tool called
terraform-docs. The terraform-docs tool reads modules and produces Markdown
or JSON documentation for the module based on its variables and outputs.

Getting our module
Before you can use a module in your configuration, you need to load it or get
it. You do that from the ~/terraform/web directory, via the terraform get com-
mand.

Version: v1.5.0 (0beb4ee) 47

https://github.com/segmentio/terraform-docs

Chapter 3: Building an application stack with Terraform

Listing 3.56: The Terraform get command

$ pwd
~/terraform/web
$ terraform get
Get: file:///Users/james/terraform/web/vpc_basic

This gets the module code and stores it in the .terraform/modules directory inside
the ~/terraform/web directory.
If you change your module, or the module you’re using has been updated, you’ll
need to run the get command again, with the -update flag set.

Listing 3.57: Updating a module

$ terraform get -update

If you run the terraform get command without the -update flag, Terraform will
not update the module.

Moving our module to a repository
Currently our vpc_basic module is located in our local filesystem. That’s cumber-
some if we want to reuse it. Let’s instead move it to a GitHub repository.
You’ll need a GitHub account to do this. You can join GitHub on their site. There’s
also some useful sign-up documentation available.
After we’ve created our GitHub account, we can create a new GitHub repository.
We’re calling ours turnbullpress/tf_vpc_basic.

Version: v1.5.0 (0beb4ee) 48

https://github.com/join
https://help.github.com/articles/signing-up-for-a-new-github-account/
https://github.com/new

Chapter 3: Building an application stack with Terraform

 NOTE You’d use your own GitHub username and repository name.

Figure 3.2: Creating a GitHub repository

Let’s add a README.md file to our ~/terraform/web/vpc_basic directory to tell
folks how to use our module.

Version: v1.5.0 (0beb4ee) 49

Chapter 3: Building an application stack with Terraform

Listing 3.58: The README.md file

AWS VPC module for Terraform

A lightweight VPC module for Terraform.

Usage

module "vpc_basic" {
source = "github.com/turnbullpress/tf_vpc_basic"
name = "vpc_name"
cidr = "10.0.0.0/16"
public_subnet = "10.0.1.0/24"

}

See `interface.tf` for additional configurable variables.

License

MIT

Let’s create a .gitignore file to ensure we don’t accidentally commit any state or
variables values we don’t want in our module repository.

Listing 3.59: Creating a .gitignore file

$ echo ".terraform/" >> .gitignore
$ echo "terraform.tfvars" >> .gitignore
$ git add .gitignore

We can then commit and push our vpc module.

Version: v1.5.0 (0beb4ee) 50

Chapter 3: Building an application stack with Terraform

Listing 3.60: Committing and pushing our vpc_basic module

$ pwd
~/terraform/web/vpc_basic
$ git add .
$ git commit -m "First commit of vpc_basic module"
$ git tag -a "v0.0.1" -m "First release of vpc_basic module"
$ git remote add origin git@github.com:turnbullpress/
tf_vpc_basic.git
$ git push -u origin master --tags

Here we’ve added all the vpc_basicmodule files and committed them. We’ve also
tagged that commit as v0.0.1. We add the newly created remote repository and
push up our code and tag.
Now we can update our module configuration in web.tf to reflect the new location
of the vpc module.

Listing 3.61: Updating our vpc_basic module configuration

module "vpc_basic" {
source = "github.com/turnbullpress/tf_vpc_basic.git?ref=v0

.0.1"
name = "web"
cidr = "10.0.0.0/16"
public_subnet = "10.0.1.0/24"

}

We’ll need to get our module again since we’ve changed its source.

Version: v1.5.0 (0beb4ee) 51

Chapter 3: Building an application stack with Terraform

Listing 3.62: Getting the new vpc_basic module

$ terraform get
Get: git::https://github.com/turnbullpress/tf_vpc_basic.git?ref=
v0.0.1

Any time we want to use the vpc_basic module, we can now just reference the
module on GitHub. This also means we can manage multiple versions of the
module—for example, we could create v0.0.2 of the module, and then use the
ref parameter to refer to that.
git::https://github.com/turnbullpress/tf_vpc_basic.git?ref=v0.0.2

This allows us to test a new version of a module without changing the old one.

Counts and counting
Let’s go back to our web.tf file and look at our remaining resources. We know
we want to create two EC2 instances in our stack. We know we can only specify a
resource named aws_instances.web once. It doesn’t make sense to duplicate the
resource with a new name, especially if its configuration is otherwise identical.
In a traditional programming language this is when you’d break out a for loop.
Terraform has two solutions for this: counts and the for loop introduced in Ter-
raform 0.12. In this chapter, we’re going to focus on counts. A count is another
meta-argument and can be added to any resource.

 TIP Terraform has a number of meta-arguments available.

Version: v1.5.0 (0beb4ee) 52

https://github.com/turnbullpress/tf_vpc_basic
https://github.com/turnbullpress/tf_vpc_basic
https://www.hashicorp.com/blog/hashicorp-terraform-0-12-preview-for-and-for-each
https://www.terraform.io/docs/configuration/resources.html#count-multiple-resource-instances
https://www.terraform.io/docs/configuration/resources.html

Chapter 3: Building an application stack with Terraform

You add a count to a resource to have Terraform iterate and create the number
of resources equal to the value of the count. Let’s look at how count works with
our aws_instances.web resource.

Listing 3.63: The aws_instances count

resource "aws_instance" "web" {
ami = var.ami[var.region]
instance_type = var.instance_type
key_name = var.key_name
subnet_id = module.vpc_basic.public_subnet_id
associate_public_ip_address = true
user_data = file("files/web_bootstrap.sh")
vpc_security_group_ids = [
aws_security_group.web_host_sg.id,

]
count = 2

}

We’ve added the countmeta-argument and specified a value of 2. When Terraform
creates the aws_instances.web resource it will iterate and create two of these
resources. It’ll create each resource with the index of the count suffixed to the
resource name, like so:

• aws_instance.web[0]
• aws_instance.web[1]

We can now refer to these resources and their attributes using these names. For
example, to access the id of one of these instances we’d use:
aws_instance.web[0].id

Version: v1.5.0 (0beb4ee) 53

Chapter 3: Building an application stack with Terraform

Sets of counted resources using splat
Sometimes we want to refer to the set of resources created via a count. To do this
Terraform has a splat syntax: *. This allows us to refer to all of these resources in
a variable. Let’s see how that works in the aws_elb.web resource.

Listing 3.64: The aws_elb resource

resource "aws_elb" "web" {
name = "web-elb"
subnets = [module.vpc_basic.public_subnet_id]
security_groups = [aws_security_group.web_inbound_sg.id]

listener {
instance_port = 80
instance_protocol = "http"
lb_port = 80
lb_protocol = "http"

}

instances = aws_instance.web.[*].id
}

The instances attribute in our aws_elb.web resource needs to contain a list of the
IDs of all the EC2 instances that are connected to our load balancer. To provide
this we make use of the splat syntax like so:
aws_instance.web.[*].id

The value assigned to the attribute is a list interpolated from the IDs of all our
EC2 instances.

Version: v1.5.0 (0beb4ee) 54

Chapter 3: Building an application stack with Terraform

Setting values with count indexes
We can also use the count to allow us to specify different values for an attribute
for each iteration of a resource. We do this by referring to the index of a count in
a variable.
Let’s take a look at how this works. We start by declaring a list variable with a
value for each iteration.

Listing 3.65: Using count indexes in variables.tf

variable "instance_ips" {
description = "The IPs to use for our instances"
default = ["10.0.1.20", "10.0.1.21"]

}

We’ve defined a new list variable called instance_ips that contains two IP ad-
dresses in our VPC subnet. We’re going to match the index of the count with the
relevant element of the list.

Listing 3.66: Looking up the count index

resource "aws_instance" "web" {

. . .

private_ip = var.instance_ips[count.index]

. . .

count = length(var.instance_ips)
}

You can see we’ve updated our aws_instance.web resource to add the private_ip

Version: v1.5.0 (0beb4ee) 55

Chapter 3: Building an application stack with Terraform

attribute. The value of the attribute uses the list element lookup we saw earlier
in this chapter.
For the element lookup we specify the name of the variable we just defined: var
.instance_ips and the index of the count using count.index. The count.index
is a special function on the count meta-argument to return the index.
When each aws_instance.web resource is created, the matching list element will
be retrieved with the index from the count.index. The var.instance_ips will
return each value, and the instance will get the correct IP address, hence:

• aws_instance.web[0] will get the IP address 10.0.1.20.
• aws_instance.web[1] will get the IP address 10.0.1.21.

This makes it easier to customize individual resources in a collection.
You’ll notice we also changed the value of the count meta-argument. Instead
of hard-coding a number, we used the length of the var.instance_ips list as
the value of the count. We know the var.instance_ips list needs to have an IP
address for each instance otherwise instance creation will fail. So we know that
we can only have as many instances as the number of elements in this list. The
length function allows us to count the element in this list and return an integer,
in our case 2. We can use this to populate the count attribute. This means we can
increment the number of instances created by just adding new private IP addresses,
rather than having to change and track the instance count in two places.

Listing 3.67: Using the length function

resource "aws_instance" "web" {

. . .

count = length(var.instance_ips)
}

Version: v1.5.0 (0beb4ee) 56

https://www.terraform.io/docs/configuration/functions/length.html

Chapter 3: Building an application stack with Terraform

We can also use the count.index in other places. For example, to add a unique
name to our EC2 instances we could do the following:

Listing 3.68: Naming using the count.index

resource "aws_instance" "web" {
. . .

tags = {
Name = "web-${format("%03d", count.index)}"

}
count = length(var.instance_ips)

}

This will populate the Name tag of each instance with a name based on the
count.index. We’ve also used a new function called format. The format
function formats strings according to a specified format. Here we’re turning the
count.index of 0 or 1 into a three-digit number.
The format function is essentially a sprintf and is a wrapper around Go’s fmt
library syntax. So %03d is constructed from 0, indicating that you want to pad the
number to the specified width with leading zeros. Then 3 indicates the width that
you want, and d specifies a base 10 integer. The flags together will pad single
digits with a leading 0 but ignore numbers larger than three digits in length.
This will produce Name tags web-000 and web-001 respectively. Having a web-000
is a bit odd though. It comes from count’s zero index. Alternately we can use
some math in our interpolated string like so:

Version: v1.5.0 (0beb4ee) 57

https://www.terraform.io/docs/configuration/functions/format.html
https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/
https://www.terraform.io/docs/configuration/expressions.html#arithmetic-and-logical-operators

Chapter 3: Building an application stack with Terraform

Listing 3.69: Interpolated math

tags = {
Name = "web-${format("%03d", count.index + 1)}"

}

This would add one to every count.index value producing the tags web-001 and
web-002 respectively. We can do other math: subtract, multiple, divide, etc., on
any integer or float variables.
We can also iterate through list elements with count.index. Let’s create a list
variable with some tags we’d like to add to our instances.

Listing 3.70: AWS owner tags in variables.tf

variable "owner_tag" {
default = ["team1", "team2"]

}

We’d like to distribute our instances between these two tag values in web.tf.

Listing 3.71: Splitting up the count instances

resource "aws_instance" "web" {
. . .

tags = {
Owner = var.owner_tag[count.index]

}
count = length(var.instance_ips)

}

Version: v1.5.0 (0beb4ee) 58

Chapter 3: Building an application stack with Terraform

This returns the element matching the count.index from the specified list variable.
When we create the resources, one instance will be tagged team1 and the second
team2.
If we specify more instances than the number of elements in our list, then Ter-
raform will fail with an error like:

Listing 3.72: Count exhausted failure

* index 2 out of range for list var.owner_tag (max 2) in:

var.owner_tag[count.index]

Wrapping counts with the element function
We can, however, cause Terraform to wrap the list using the element function.
The element function pulls an element from a list using the given index and wraps
when it reaches the end of the list.
Let’s update our code to do that.

Listing 3.73: Wrapping the count instances list

resource "aws_instance" "web" {
. . .

tags = {
Owner = element(var.owner_tag, count.index)

}
count = length(var.instance_ips)

}

Version: v1.5.0 (0beb4ee) 59

https://www.terraform.io/docs/configuration/functions/element.html

Chapter 3: Building an application stack with Terraform

Now, if our var.instance_ips variable had 12 elements, then our count will cre-
ate 12 instances. Terraform would select each element then wrap to the start of
the list and select again. This way we’d end up with six instances tagged with
team1 and six instances tagged with team2.

Conditionals
The count meta-argument also allows us to explore Terraform’s conditional logic.
Terraform has a ternary operation conditional form.

 NOTE Conditional logic was introduced in Terraform 0.8. It will not work
in earlier releases.

A ternary operation looks like this:

Listing 3.74: A ternary operation

condition ? true : false

We specify a condition, followed by a ?, and then the result to return if the condi-
tion is true or false, separated by :.
Let’s see how we might use a conditional to set the count meta-argument as an
alternative to the methods we’ve seen thus far.

Version: v1.5.0 (0beb4ee) 60

https://www.terraform.io/docs/configuration/expressions.html#conditional-expressions
https://en.wikipedia.org/wiki/Ternary_operation

Chapter 3: Building an application stack with Terraform

Listing 3.75: Using ternary with count

variable "environment" {
default = "development"

}

resource "aws_instance" "web" {
ami = lookup(var.ami, var.region)

. . .

count = var.environment == "production" ? 4 : 2
}

Here we’ve set a variable called environment with a default of development. In
our resource we’ve configured our count attribute with a conditional. If the var.
environment variable equals production then launch 4 instances, if it is the default
of development, or any other value, then only launch 2 instances.
The condition can be any interpolation: a variable, a function, or even chaining
another conditional. The true or false values can also return any interpolation or
valid value. The true and false values must return the same type though.
The condition supports a bunch of operators. We’ve already seen equality, ==,
and Terraform supports the opposite operator != for inequality. It also supports
numeric comparisons like greater or less, > and <, and the related >= and <=. It
also supports Boolean logic like: &&, || and unary !.
We don’t have to use conditionals with just count though. They work on any
resource or module attribute, for example:

Version: v1.5.0 (0beb4ee) 61

Chapter 3: Building an application stack with Terraform

Listing 3.76: A conditional attribute

module "vpc_basic" {
. . .

cidr = var.region != "us-east-1" ? "172.16.0.0/12" :
"172.18.0.0/12"

. . .
}

Here we’re setting the value of the cidr attribute using a ternary conditional. If the
var.region variable is not equal to us-east-1 then use the CIDR of 172.16.0.0/12
. If it is equal then use 172.18.0.0/12.

 TIP You can read more about conditionals in their documentation.

Locals
Terraform also has the concept of local value configuration. Local values assign a
name to an expression, essentially allowing you to create repeatable function-like
values.

 NOTE Local values have been available since Terraform version 0.10.3.

We define local values in locals blocks.

Version: v1.5.0 (0beb4ee) 62

https://www.terraform.io/docs/configuration/expressions.html#conditional-expressions

Chapter 3: Building an application stack with Terraform

Listing 3.77: A local definition

locals {
instance_ip_count = length(var.instance_ips)

}

Here we’ve created a local value from the application of the length function to
our var.instance_ips variable. This assigns to the resulting count of IPs in that
variable to a local value of instance_ip_count. We can then use this local value
in our resources without needing to repeat the function, for example:

Listing 3.78: Using a local in a resource

resource "aws_instance" "web" {
. . .

tags = {
Owner = element(var.owner_tag, count.index)

}
count = instance_ip_count

}

Local expressions can refer to or use previously defined locals too but can’t be self-
referential. For example, you can’t use a local within the expression that defines
that local.

 TIP A local is only available in the context of the module it is defined in. It
will not work cross-module.

Version: v1.5.0 (0beb4ee) 63

Chapter 3: Building an application stack with Terraform

You can specify one or many locals blocks in a module. We’d recommend group-
ing them together for maintainability. If you use more than one locals block in
a module then the names of the locals defined must be unique across the module.
Now let’s look at provisioning some application configuration on our EC2 in-
stances.

Provisioning our stack
Provisioning is the process of adding configuration, packages, applications, and
services to the infrastructure we’re creating. It usually involves making more
granular changes to our infrastructure than we do with Terraform—for example,
installing Apache on an EC2 instance. For complex provisioning we’re likely to
hand off the task to a dedicated tool like Puppet, Chef, or Ansible. For our stack,
however, we’re going to do some simple provisioning using EC2 user data. With
user data, you can specify some commands or actions that should be run when
the EC2 instance is launched.

 TIP We’ll learn more about provisioning and integration with configuration
management tools in Chapter 4.

To make use of user data in Terraform we add the user_data attribute to our
aws_instance.web resources in the web.tf file.

Version: v1.5.0 (0beb4ee) 64

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

Chapter 3: Building an application stack with Terraform

Listing 3.79: Adding user data to our instances

resource "aws_instance" "web" {

. . .
user_data = file("files/web_bootstrap.sh")

. . .

count = length(var.instance_ips)
}

We can see that the value of our user_data attribute is:
file("files/web_bootstrap.sh")

This uses a new function, file, to load the contents of a file as the value of an
attribute. In this case we’re loading a shell script called web_bootstrap.sh from
a directory called files. The location of the files directory is relative to the
current directory.
Let’s create that directory and file now.

Listing 3.80: Creating the files directory

$ pwd
~/terraform/web
$ mkdir files
$ cd files
$ touch web_bootstrap.sh

Let’s add some commands to the web_bootstrap.sh script.

Version: v1.5.0 (0beb4ee) 65

https://www.terraform.io/docs/configuration/functions/file.html

Chapter 3: Building an application stack with Terraform

Listing 3.81: The web_bootstrap.sh script

#!/bin/bash
sudo apt-get update
sudo apt-get install -y nginx
sudo service nginx start

Now when our instances launch Nginx will automatically be installed and started.
We’ll see the results of this when we apply our configuration.

 TIP It might take some time after the instance is launched to complete the
installation process. Be patient! You can SSH into the instances to check the
progress if required.

We’re going to focus on more complex provisioning in Chapter 4. For now let’s
finish building our stack.

Finishing up our stack
At the bottom of our configuration file there’s some security group configuration,
providing security groups for some of the resources in our web.tf file. We’re
not going to show you this here because security group configuration is long and
complex, but you can see it in the book’s source code.
Finally, let’s add some outputs to our stack. We’ll create a new file in the ~/
terraform/web directory called outputs.tf and populate it.

Version: v1.5.0 (0beb4ee) 66

https://github.com/turnbullpress/tfb-code/blob/master/3/web/web.tf

Chapter 3: Building an application stack with Terraform

Listing 3.82: The web outputs.tf file

output "elb_address" {
value = aws_elb.web.dns_name

}

output "addresses" {
value = aws_instance.web.[*].public_ip

}

output "public_subnet_id" {
value = module.vpc_basic.public_subnet_id

}

We’ve specified three outputs. These outputs will be displayed at the end of our
terraform apply run. We’ve specified the DNS name of our Elastic Load Balancer
resource and a list of the public IP addresses of our EC2 instances. We’ve used
the splat syntax of [*] to return the public_ip values of all of the EC2 instances
we’re going to create.
We’ve also specified an output that returns one of the outputs of the vpc mod-
ule: public_subnet_id. Outputs allow us to bubble up attributes from all of our
configurations, including modules.
Now let’s tidy up a few loose ends by better managing our configuration.

Committing our configuration
Now is a good time to commit our configuration to Git. This will allow us to go
back to a known good state if we need to, and to potentially share our configura-
tion with others.

Version: v1.5.0 (0beb4ee) 67

Chapter 3: Building an application stack with Terraform

 NOTE We’re going to assume you know the basics of how Git works, and
that you’ll be regularly committing. This is just a reminder that it’s a good idea
to store your configuration in version control.

Listing 3.83: Committing our configuration

$ pwd
terraform/web
$ git add .
$ git commit -a "First draft of our web stack"

This will commit our current Terraform configuration to our Git repository. We
could then push our configuration upstream to a shared repository for others to
use.

Validating and formatting
Don’t forget the terraform validate and terraform fmt commands we intro-
duced in Chapter 2. The validate command checks the syntax, validates your
Terraform configuration files, and returns any errors. The fmt command neatly
formats your configuration files. These are both very useful, especially as your
configurations get more complex.
Now let’s see what happens when we plan the stack.

Version: v1.5.0 (0beb4ee) 68

Chapter 3: Building an application stack with Terraform

Initializing Terraform
Before we go any further we need to initialize this Terraform configuration and
download our provider. We do this using the terraform init command.

Listing 3.84: Initialiazing the web configuration

$ terraform init

This will get our aws provider and update our local configuration.

Planning our stack
Now that our stack’s configuration and initialization is complete we can build it.
But before we do, it’s always a good idea to run terraform plan to ensure the
configuration is going to do what we expect.

Version: v1.5.0 (0beb4ee) 69

Chapter 3: Building an application stack with Terraform

Listing 3.85: Planning our web configuration

$ terraform plan
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.

. . .

+ aws_elb.web
availability_zones.#: "<computed>"
connection_draining: "false"
connection_draining_timeout: "300"
cross_zone_load_balancing: "true"
dns_name: "<computed>"
health_check.#: "<computed>"

. . .

+ module.vpc_basic.aws_internet_gateway.tfb
tags.%: "1"
tags.Name: "web-igw"
vpc_id: "vpc-3c35d65a"

. . .

Plan: 9 to add, 0 to change, 0 to destroy.

We’ve included a sample of the terraform plan output. It shows us each resource
that will be created, the values of the attributes that we know about now, and
which of those will be computed when we apply the configuration. We can see
that nine total resources will be created.
Now we’re comfortable Terraform is going to do the right thing!

Version: v1.5.0 (0beb4ee) 70

Chapter 3: Building an application stack with Terraform

Applying our stack
Let’s apply our execution plan and build our stack. To do this we run the
terraform apply command.

 NOTE In this command and future terraform apply commands we’re
going to skip the interactive prompt and assume you’ve typed yes to save some
space in the output.

Version: v1.5.0 (0beb4ee) 71

Chapter 3: Building an application stack with Terraform

Listing 3.86: Applying our web stack

$ terraform apply
module.vpc_basic.aws_vpc.tfb: Creating...
cidr_block: "" => "10.0.0.0/16"
default_network_acl_id: "" => "<computed>"
default_route_tablle_id: "" => "<computed>"

. . .

subnets.#: "" => "1"
subnets.248256935: "" => "subnet-8f0afcb3

"
zone_id: "" => "<computed>"

aws_elb.web: Creation complete

Apply complete! Resources: 9 added, 0 changed, 0 destroyed.

. . .

State path: terraform.tfstate

Outputs:

addresses = [
54.167.183.26,
54.167.186.170

]
elb_address = web-elb-1083111107.us-east-1.elb.amazonaws.com
public_subnet_id = subnet-ae6bacf5

It might take a couple minutes to create all of our configuration and finish. We
should see that nine resources have been created. We can also see our outputs are
the last items returned. We see the IP addresses of both our EC2 instances and the
DNS name of our Elastic Load Balancer. We also see the ID of the public subnet
we created with the vpc module.
If we want to see these outputs again, rather than applying the configuration again,

Version: v1.5.0 (0beb4ee) 72

Chapter 3: Building an application stack with Terraform

we can run the terraform output command.

Listing 3.87: Showing the outputs only

$ terraform output
addresses = [

54.167.183.26,
54.167.186.170

]
elb_address = web-elb-1083111107.us-east-1.elb.amazonaws.com
public_subnet_id = subnet-ae6bacf5

 TIP Remember if you want to see the full list of all our resources and their
attributes you can run the terraform show command.

We can also make use of this data in other tools by outputting it in a machine-
readable JSON format. To do this we can use the terraform output command
with the -json flag.

Version: v1.5.0 (0beb4ee) 73

Chapter 3: Building an application stack with Terraform

Listing 3.88: Outputs as JSON

$ terraform output -json
{

"addresses": {
"sensitive": false,
"type": "list",
"value": [

"54.167.183.26",
"54.167.186.170"

]
},
"elb_address": {

"sensitive": false,
"type": "string",
"value": "web-elb-1083111107.us-east-1.elb.amazonaws.com

"
}
"public_subnet_id": {

"sensitive": false,
"type": "string",
"value": "subnet-ae6bacf5"

}
}

We can consume this data in another service. For example, we could pass it to a
provisioning tool such as Chef, Puppet, or Ansible.

Graphing our stack
Lastly, let’s look at our stack’s graph to see how the resources are interrelated. To
output the graph we use the terraform graph command, pipe the result to a .dot
file, and then convert it to an SVG file.

Version: v1.5.0 (0beb4ee) 74

Chapter 3: Building an application stack with Terraform

Listing 3.89: Graphing the web stack

$ terraform graph > web.dot
$ dot web.dot -Tsvg -o web.svg

We can then display the web.svg file.

Figure 3.3: The graph of our web application stack

We can see two instances of the aws provider, one for our root configuration and
the other for the vpc module. You can also see the relationships between the
various resources we’ve just created.

Seeing the results
Finally, we can actually see the results of our Terraform plan being executed by
viewing the URL of the Elastic Load Balancer we just created. We can take the
DNS name of the aws_elb.web resource from the outputs, in our case:

Version: v1.5.0 (0beb4ee) 75

Chapter 3: Building an application stack with Terraform

web-elb-1083111107.us-east-1.elb.amazonaws.com

We can browse to that URL and, if everything works, see the default Nginx index
page.

 TIP Remember, it might take a few minutes to complete the post-launch
installation using our user_data script.

Figure 3.4: Our stack in action

Voilà—we’ve created a simple, easily repeatable infrastructure stack!

 TIP In addition to building a stack from your configuration, you can do the
reverse and import existing infrastructure. You can read more about the import
process in the Terraform documentation.

Version: v1.5.0 (0beb4ee) 76

https://www.terraform.io/docs/state/import.html
https://www.terraform.io/docs/state/import.html

Chapter 3: Building an application stack with Terraform

Destroying the web stack resources
If you’re done with your web stack you can then destroy it (and stop spending any
money on AWS resources) with the terraform destroy command.

Listing 3.90: Destroy our web stack

$ terraform destroy
Do you really want to destroy?
Terraform will delete all your managed infrastructure.
There is no undo. Only 'yes' will be accepted to confirm.

Enter a value: yes

module.vpc_basic.aws_vpc.tfb: Refreshing state... (ID: vpc-
a22c10c5)

. . .

module.vpc_basic.aws_vpc.tfb: Destruction complete

Destroy complete! Resources: 9 destroyed.

Now our web stack has been destroyed.

Summary
In this chapter we’ve put our burgeoning Terraform knowledge into action to
build a simple web application with a load balancer. We’ve been introduced to
the concept of parameterizing our configuration, allowing us to be more flexible in
how we build our configuration. We’ve explored the types of variables available
to us and how to use them.

Version: v1.5.0 (0beb4ee) 77

Chapter 3: Building an application stack with Terraform

We were introduced to modules, Terraform’s approach to reusable infrastructure.
We’ve learned how to build and use modules in our configuration. We’ve also
learned about some of Terraform’s meta-arguments. Finally, we learned about
outputs and how to make use of them.
In the next chapter we’ll learn more about how to provision software with Ter-
raform, including how to connect it to existing provisioners like Puppet and Chef.

Version: v1.5.0 (0beb4ee) 78

List of Figures

3.1 Our web application stack . 2
3.2 Creating a GitHub repository . 49
3.3 The graph of our web application stack 75
3.4 Our stack in action . 76

79

Listings

3.1 Our original configuration . 3
3.2 Creating the variables.tf file . 4
3.3 Our first variables . 5
3.4 Variable collection type specified . 6
3.5 Variable type specified . 7
3.6 Variable descriptions . 7
3.7 Adding our new variables . 8
3.8 A map variable . 10
3.9 Using map variables in base.tf . 10
3.10 Constructing a list . 12
3.11 Using a list . 12
3.12 Retrieving a list element . 13
3.13 An empty variable . 14
3.14 Empty and default variables . 14
3.15 Command line variables . 15
3.16 Setting a map with var . 15
3.17 Populating a list via command line flag 16
3.18 Creating a variable assignment file . 16
3.19 Adding variable assignments . 17
3.20 Variable doesn’t exist error . 17
3.21 Running Terraform with a custom variable file 18
3.22 Variable defaults . 19

80

Listings

3.23 Creating the web directory . 20
3.24 Adding the state file and backup to .gitignore 20
3.25 Creating the stack files . 21
3.26 Our variables.tf file . 22
3.27 The web terraform.tfvars file . 23
3.28 Installing AWS CLI on Linux . 24
3.29 Installing AWS CLI on OSX . 24
3.30 Installing awscli via choco . 24
3.31 Running aws configure . 24
3.32 The aws/credentials file . 25
3.33 The aws/config file . 25
3.34 Our web.tf file . 27
3.35 Multiple providers . 28
3.36 The vpc_basic module . 30
3.37 Multiple vpc_basic modules . 31
3.38 Creating the vpc_basic module directory 31
3.39 The vpc_basic module with a remote source 32
3.40 Referencing a module version . 32
3.41 Referencing a registry module . 33
3.42 Referencing a registry module’s version 34
3.43 Creating the vpc_basic module variables 35
3.44 The vpc_basic module’s variables . 35
3.45 The vpc_basic module’s default variables 36
3.46 Overriding vpc_basic module’s default variables 37
3.47 The vpc_basic module resources . 38
3.48 Multiple aliased providers . 39
3.49 The vpc_basic module’s default variables 40
3.50 The aws_vpc resource . 41
3.51 The aws_subnet resource . 41
3.52 The vpc_basic module outputs . 43
3.53 The vpc_basic module outputs . 44

Version: v1.5.0 (0beb4ee) 81

Listings

3.54 The vpc_basic module block revisited 45
3.55 Our web aws_elb resource . 46
3.56 The Terraform get command . 48
3.57 Updating a module . 48
3.58 The README.md file . 50
3.59 Creating a .gitignore file . 50
3.60 Committing and pushing our vpc_basic module 51
3.61 Updating our vpc_basic module configuration 51
3.62 Getting the new vpc_basic module . 52
3.63 The aws_instances count . 53
3.64 The aws_elb resource . 54
3.65 Using count indexes in variables.tf . 55
3.66 Looking up the count index . 55
3.67 Using the length function . 56
3.68 Naming using the count.index . 57
3.69 Interpolated math . 58
3.70 AWS owner tags in variables.tf . 58
3.71 Splitting up the count instances . 58
3.72 Count exhausted failure . 59
3.73 Wrapping the count instances list . 59
3.74 A ternary operation . 60
3.75 Using ternary with count . 61
3.76 A conditional attribute . 62
3.77 A local definition . 63
3.78 Using a local in a resource . 63
3.79 Adding user data to our instances . 65
3.80 Creating the files directory . 65
3.81 The web_bootstrap.sh script . 66
3.82 The web outputs.tf file . 67
3.83 Committing our configuration . 68
3.84 Initialiazing the web configuration . 69

Version: v1.5.0 (0beb4ee) 82

Listings

3.85 Planning our web configuration . 70
3.86 Applying our web stack . 72
3.87 Showing the outputs only . 73
3.88 Outputs as JSON . 74
3.89 Graphing the web stack . 75
3.90 Destroy our web stack . 77

Version: v1.5.0 (0beb4ee) 83

Index
.gitignore, 20, 50
.terraform directory, 48

Ansible, 64, 74
AWS, 8
aws

configure, 24

Chef, 64, 74
Conditionals, 60

depends_on, 47

Function, 11
element, 13, 59
file, 65
format, 57

Functions
length, 56

Git, 20, 68
GitHub, 48

Import infrastructure, 76

Local values, 62
Locals, 62

Meta-argument
count, 52
depends_on, 29, 47

module
providers, 40
source
registry modules, 33
versioned Terraform Registry
modules, 33

Modules, 29
documentation, 47
getting, 47
Git, 32
outputs, 42
registry, 33
resources, 37
source, 30
sources, 32, 52
structure, 34
updates, 48
usage, 45
versions, 52

multiple providers, 29

84

Index

Overrides, 19

Provider, 75
AWS, 8, 75
aws, 28

providers
alias, 29

Puppet, 64, 74

REPL, 9
resource providers, 29

Ternary operation, 60
Terraform

count, 52
dependencies, 47
environment variables, 18
Import infrastructure, 76
isolation, 20
lists, 11
maps, 9
module, 29, 32
outputs, 42, 66
override, 19
path, 32
REPL, 9
variable
math, 57

variable defaults, 14
variables, 4, 5

terraform
-var-file, 18

apply, 71
console, 9
destroy, 77
get, 47
-update, 48

init, 69
output, 73
-json, 73

show, 73
var, 15

Terraform Module Registry, 30
Terraform Registry, 33
terraform-docs, 47
terraform.tfvars, 16

Variables, 5, 8
command line flags, 15
defaults, 14
environment variables, 18
file, 16
list, 11
zero-indexed, 12

map, 9
populating, 15

Vault, 19

Version: v1.5.0 (0beb4ee) 85

Thanks! I hope you enjoyed the book.

© Copyright 2016 - James Turnbull <>

mailto:

	Building an application stack with Terraform
	Our application stack
	Parameterizing our configuration
	Variables
	Maps
	Lists
	Variable defaults
	Populating variables

	Starting our stack
	Using AWS shared credentials

	First resources
	Modules
	Defining a module
	Module structure

	Using our module
	Getting our module
	Moving our module to a repository

	Counts and counting
	Sets of counted resources using splat
	Setting values with count indexes
	Wrapping counts with the element function
	Conditionals
	Locals

	Provisioning our stack
	Finishing up our stack
	Committing our configuration
	Validating and formatting
	Initializing Terraform
	Planning our stack
	Applying our stack
	Graphing our stack
	Seeing the results
	Destroying the web stack resources
	Summary

	List of Figures
	List of Listings
	Index

